5.9 Liter CR Dodge Cummins 03-07 Discussion of 5.9 Liter Dodge Cummins Diesels with Common Rail Injection

12 To 24 Valve

Thread Tools
 
Search this Thread
 
  #1  
Old 09-21-2008, 06:28 PM
Dieseldog92's Avatar
Diesel Fan
Thread Starter
Join Date: Aug 2008
Posts: 24
Likes: 0
Received 0 Likes on 0 Posts
Default 12 To 24 Valve

I love my '92 1 ton, 5 spd, straight pipe, k&n, and turned up injector pump. I plan on keeping it forever it is the most reliable truck i have ever owned yet im looking to get a new daily driver. I am looking into something like an 04 to 06 2500 4x4. Of course it wont stay stock for long. Cold air, straight pipe, tuner and probably more down the road (injectors ect...) As i said it will be a daily driver with occasionall towing and mudding and im not gunna lie a little racing. What transmission should i strive for? I have heard that after about 80-90hp increases any stock tranny will meet an early demise. Would the 6 speed take more abuse? Would it be worth the money to upgrade the valve body and torque converter before any upgrades if i went with the auto? If i get the standard what could i do to beef it up? I dont want to have any regrets after i choose my new ride so any info would be greatly appreciated thanks!
 
  #2  
Old 09-21-2008, 07:05 PM
Benjamin's Avatar
Bombardier
Join Date: Mar 2007
Location: Da' Dirty South
Posts: 9,655
Received 607 Likes on 502 Posts
Default

i know if you are gonna do alot of towing then the manual would be the way to go. if you want to race the auto would do it for you. there are people here that have put down over 400HP on the stock tranny. it prolly won't last very long beating on it. a new converter at the bare min. would prolong the life of the tranny and a valve body would be the next addition i'd do. there are plenty of manufactures out there with quality converters and V/B's, suncoast, goerend, dunrite, etc. the manual tranys there are shafts that can be upgraded and clutches to be had that will tear down a house but if you try racing one and powershifting it is going to be on borrowed time.
 
  #3  
Old 09-21-2008, 09:13 PM
Dieseldog92's Avatar
Diesel Fan
Thread Starter
Join Date: Aug 2008
Posts: 24
Likes: 0
Received 0 Likes on 0 Posts
Default

I am leaning more towards the auto. What about a lock up converter? I have seen the ones you have a dial to control is that the only way to go?
 
  #4  
Old 09-21-2008, 09:28 PM
Benjamin's Avatar
Bombardier
Join Date: Mar 2007
Location: Da' Dirty South
Posts: 9,655
Received 607 Likes on 502 Posts
Default

all the newer, 2nd gen or newer, have lock up converters. where the problem lies in the stock version is the high stall speed and the design of the converter itself. the stock converter has lugs welded to the front to bolt it to the flex plate. under high tq or loads when the converter locks it puts so much stress on those lugs that it bends them and the front cover on the converter making the flat surface the clutch is pressed against during lockup wavy and not flat, this causes converter chatter. here is a good explanation from Dave Goerend on how a converter works.

copied from Goerend Transmission Incorporated

For a standard duty application we like to start with a low stall triple disc converter that will keep the engine in its torque range of about 1700-2200 rpm. Put another way, the upgraded converter will have the engine working at about 500-800 rpm lower than a stock converter. The stock converter usually lets the engine rev to 2300-2800 rpm, which is past its peak power rpm. On a 24 valve Cummins Turbo Diesel with the "Common Rail" system this torque range will be slightly higher.

In order to understand the benefits of this upgrade it is important to know how a torque converter works:

Torque Converter Basics


Let’s start with 2 wall fans facing each other:

If we turn one fan on the wind from this fan will make the other fan turn, although much slower than the "drive" fan. In the case of a torque converter, the drive fan is bolted to the engine and the fan being driven is connected to the input shaft of the transmission. In addition a oil is used to transmit the energy between the two fans, as opposed to air in the example scenario.

When stationary (such as at a stop sign), with the trans in gear and the engine at idle, the drive fan is spinning so slow that it will not "blow" enough oil at the driven fan to make it turn. As the engine speed is increased the drive fan blows more oil at the driven fan and the driven fan starts to turn and moves the vehicle.

This important concept is commonly referred to as "fluid coupling".

The drive fan will always turn a little faster than the driven fan, just like the wall fans. If you were to stick a feather, or straw, into the driven fan blades it would slow the driven fan down but not the drive fan. In a real application this is just like pulling a heavier trailer, the straw in the driven fan is essentially adding a load.

Torque Converter Lock-up


Once the truck is up to speed there is a mechanism, called a lock up clutch, that will "lock" the fans together. In actuality the driven fan is "locked" to the front cover of the torque converter, which is bolted to the engine. When this occurs the drive fan and driven fan turn at the same rpm, with no loss of power in the fluid coupling.

When the drive and driven fan are not locked together, heat is generated in the converter. The greater the load and rpm difference, the greater the heat generated. This heat is essentially lost power which results in a lower transmission life, performance and fuel economy.

The loss of energy in this process can be calculated: suppose we have a converter where the drive fan (impeller) is turning 2500 rpm and the driven fan (turbine) is turning 1800 rpm. The efficiency of this converter, at this speed, is 72% (1800 divided by 2500). The efficiency is constantly varying, depending on the rpm of the converter, the power input to the converter and the output load, or towed weight. When the converter clutch locks the fans together, the engine rpm will drop 700 rpm.

If we use a converter that is more efficient, such as a "low stall" converter we will be able to achieve a higher efficiency rate. For example, an 88%, efficiency rate would mean that the impeller would be turning 2500 rpm and the turbine would be turning 2200 rpm. When the converter clutch locks the turbine to the front cover we would only see a rpm drop of 300 rpm, as opposed to 700 rpm.

A lower rpm drop is substantially easier on the converter’s clutch lining and will reduce glazing. In addition, because the fluid coupling of the converter is more efficient, more power, less heat and better fuel economy are delivered before the converter locks up.

Torque Converter Stall Speeds


To explain "stall speed", let’s start with a true full stall. If the transmission were in drive, the brakes were held down (so the vehicle will not move) and the throttle was held "wide open" the torque converter will "stall" the engine at a certain rpm. When "stalled" the engine will not be able to spin any faster unless the vehicle is allowed to move. This is a true full stall. We have specialized equipment which is used to perform this test.

DO NOT TEST FOR TRUE STALL, IT CAN DAMAGE SHAFTS AND OVERHEAT THE TORQUE CONVERTER!

The next stall speed is generally called "break away" stall speed. If a truck is stopped on a hill and held in position using light throttle as opposed to brakes we are almost at the "break away" stall speed. If the engine rpm required to "hold" the truck was 1100 rpm and an increase to 1125 rpm started to move the truck then the "break away" stall speed is 1125 rpm.

The last stall speed is generally referred to as the "flash stall" speed. The flash stall speed takes effect under hard acceleration. If, from a standing start, you were to "floor" the throttle the engine would start to accelerate quickly and then pause at an rpm is it starts to pull the truck. If the engine went from idle to 1500 rpm in 1.5 seconds when floored and then took another 2 or 3 seconds to get from 1500 to 1700 rpm, this would mean the "flash stall" speed was at 1500 rpm. When we lower the stall we want to lower the break away speed as well as the flash stall speed. This will make the engine work at a lower rpm for a given road speed and, in most cases, will increase fuel mileage.

Once up to speed, the computer will command the lock up clutch "on", and the driven fan will lock to the front cover of the converter. At this point the drive, driven fan and engine are turning the same speed which means all engine power will be delivered to the transmission and back to the wheels.

Upgrading Your Stock Converter


In a stock torque converter, the clutch has 1 clutch plate with about 37 square inches of clutch lining. At Goerend Transmission we like to use 3 clutch surfaces that total about 105 square inches of lining, we call this a triple disc converter. This triple disc will hold dramatically more torque than a single disc.

The cost of this triple disc torque converter is $1295.00.

This converter has an unconditional lifetime warranty. If the transmission was to fail or the input shaft broke and the converter needed to be replaced- you pay for the cost of freight only. The warranty does not cover loss of use, time, towing, installation or per diem damages. Cost of a 100,000 mile warranty converter is $1050.00. It would cost approximately one half of this amount to rebuild this converter if it was ruined by a transmission failure or a broken input shaft.
 
Related Topics
Thread
Thread Starter
Forum
Replies
Last Post
Bill in Ballard
Ford 83-94 6.9 and 7.3L General
3
03-13-2016 07:42 PM
jeremiah1
5.9 Liter CR Dodge Cummins 03-07
0
07-21-2015 06:35 PM
LTreis702
Chevy/GMC 6.2L and 6.5L
4
02-14-2015 12:52 PM
bonestock
24 Valve 2nd Gen Dodge Cummins 98.5-02
0
02-01-2015 08:41 PM
behrendt1061
Diesel In Distress - Support Ticket
1
12-04-2014 05:49 PM



Quick Reply: 12 To 24 Valve



All times are GMT -5. The time now is 08:34 PM.