Diesel Bombers SIGN UP NOW

National Association of Diesel Motorsports
Go Back   Diesel Bombers > Ford Powerstroke > Ford Powerstroke 94-98 7.3L
Sign in using an external account
Register Forgot Password?
Search


Registered Members don't see these ads. Register now it's free!

Ford Powerstroke 94-98 7.3L Discussion of 94-98 7.3 Liter Ford Powerstroke Turbo Diesels

Welcome to Diesel Bombers Forums!
Welcome to DieselBombers .com.

You are currently viewing our forums as a guest, which gives you limited access to view most discussions and access our other features. By joining our community you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content and access many other special features. Registration is fast, simple and absolutely free so please, join the Diesel Bombers Forums community today!


Mod & Article by Jonathan Ryan The Engine Exhaust Back Pressure Valve (EBPV) is a butterfly type valve located on the outlet of the turbocharger, between the turbine and the down pipe. It is controlled by the Power train Control Module (PCM), and activated by ... JOIN NOW TO REMOVE TRACER

Reply
 
 
 
submit to reddit
 
LinkBack Thread Tools Search this Thread
  #1  
Old 09-07-2008, 02:22 PM
slowtowpig's Avatar
Diesel Bomber

   
View Member's Albums

Default DIY Exhaust Brake

Mod & Article by Jonathan Ryan


The Engine Exhaust Back Pressure Valve (EBPV) is a butterfly type valve located on the outlet of the turbocharger, between the turbine and the down pipe. It is controlled by the Power train Control Module (PCM), and activated by engine oil pressure. Its purpose is to decrease engine warm up time in cold weather by restricting exhaust flow out of the engine. It can be very easily and very inexpensively converted into an engine exhaust brake by adding some simple wiring and a switch.

The valve is very practical for assisting braking. When used correctly its braking effect can be compared to the restriction gained by downshifting one gear while descending a hill. The valve is most valuable to braking when engine speed is between 2500 and 3000 RPM. Unfortunately, it will lose the engine braking abilities when engine speed drops below 2000 RPM.

The following method outlines the manner in which the EBPV can be converted to a braking device. The following will cover any vehicle equipped with a manual transmission. Vehicles equipped with automatic transmissions will require an additional circuit to be added in order to maintain torque converter lockup while the exhaust brake is activated. That circuit will be addressed at the end of this article, however the majority of this article is applicable for both transmission types.


EBPV Schematic at Webshots Outdated Link

In order to control the function of the EBPV, I recommend using a 3-position switch. This type of switch will control the Valve in the following manner:


Switch in the OFF Position (center position): The EBPV will function normally, as it would for a stock vehicle. This means that the valve will only actuate in order to warm up the engine.


Switch in the "A" ON Position: the EBPV closes and remains closed until the switch is turned OFF.


Switch in the “B” ON Position: the EBPV will close whenever the brake pedal is pressed, and will open when the pedal is released. There will be a 2-3 second lag for the exhaust valve to close upon stepping on the brake. Thus, it is important to understand that when using it in the "B" ON position to push the pedal and hold it down with steady pressure. The reason for keeping pedal pressure is that the EBPV actuator is receiving power from the brake light circuit when the switch is in this position. Thus, pumping the brakes or releasing the pedal will cause the valve to deactivate or open. Furthermore, once the brake is applied again it will take another two seconds for the EBPV to activate again. Unfortunately, pumping the brake pedal will result in the exhaust valve remaining in a constant open position. This will provide ZERO engine braking force. To prevent this less than desirable phenomenon from happening, it is important the operator keep his foot on the brake lightly enough that the brake light switch is continually activated. I prefer touching and holding my pedal just hard enough for the brake lights to come on; then, when I hear the EBPV close (it makes a distinct hissing), I begin applying additional pressure to the brake pedal. Reducing brake pedal pressure can be done without losing exhaust-braking force, as long as there is enough pedal pressure maintained to keep the brake lights on.


Materials:

·

(1) ON-OFF-ON type Heavy Duty Double-Pole Double-Throw (DPDT) toggle switch. It will have connections for 6 wires on the back, and the switch will have 3 positions UP=ON, CENTER=OFF, DOWN=ON. RS (Radio Shack)# 275-1533A $2.49 or 275-710 $2.99 · 25'-30' of 18 gauge wire. 5'-7' each of 4 different colors is best. · (10-12) Ring or Spade terminals for wire connections. 18-22 gauge are red. RS# 64-3032A or 64-3033A $1.49 (4-6) Butt connectors for wires. 18-22 gauge are red. RS# 64-3037A $1.49 · (2) Rectifier Diodes. A diode is the equivalent on an electrical check valve, allowing current to flow in only one direction. RS# 276-1114 · (2) Optional Mini Indicator lamps. RS# 276-085A (red) 276-084A (green) $1.99 each. (By using the switch indicator lights, the operator immediately knows how the EBPV is activated or not.) · 10' Split loom for protecting wires. RS# 278-1264 $3.99 · (10) Wire ties. · (1) Inline fuse holder. RS# 270-1213 $1.99 · Electrical tape. I recommend Liquid Electrical Tape as being better for almost everything. · Tape and Marker (In order to label wires.)

Tools:

·
Wire cutters/strippers · Screw Drivers · Drill w/ bits up to 7/16" · Volt/Ohm Meter, or at least a test light. · Soldering Iron is recommended but not essential. · Torx bits &/or 1/4" drive metric sockets to remove dashboard trim to install switch.

Procedure:

Decide on a place in the dash to install the switch. I installed mine in the black panel just to the right of the "Wait to Start" light. There is room for 2-3 switches there.

Remove the necessary trim and molding around the steering column / instrument panel to access the reverse side of where you want the switch. Drill a 1/2" hole, and install the switch. Re-install the molding to make sure it fits into place when the switch is installed. Then, remove the switch and the molding again for ease of access while wiring.

Wire #1: Decide what you will use for a positive power source. Insure that this source is one that is "ON" only when the ignition is in the “ON” position. I recommend the 8 gauge, gray/yellow wire in the bundle under the steering column. You can also tap a fuse in the fuse panel. Run wire [#1] from the source to the switch, connecting it to terminal A2. I numbered the terminals as viewed from the back of the switch Install the inline fuse holder on this line. Make sure to leave 6"-12" or more of slack on all the wires. You can always bundle them up later.

Wire #2: Decide placement of a negative power point or ground, and run a wire from this to the switch, connecting it to terminal C1.

Connect one light to terminals A1 and C2; this is light A. Connect the other light to terminals B1 and C2; this is light B. Drill holes for the lights just above and below the switch. Install the lights with B in the top hole, and A in the bottom. I recommend this because when the switch is down, contact is made between A+C; when the switch is up, contact is between B+C. For simplicity, the diagram does not show the lights "crossed" like this.

Remove the black-hinged cover from over the fuel filter area in the engine compartment.

Wires#3 & #4: Run two wires from the switch through the firewall into the engine compartment. Connect one [#3] to terminal C2 and run it to the front of the engine. Connect the other [#4] to terminal B2 and run it to the brake master cylinder. If you have a horizontal diamond shaped plate about 2.5" wide just to the passenger's side of the clutch cylinder, remove the screws and run the wires through it. Otherwise, you may need to drill a hole. I always find that running the wires is the hardest part of any wiring project.

There should be a green wire by the driver's side of the master cylinder in the group of 4 marked "Center High Mount Stop Lamp Feed." This wire most likely will not be connected to anything. This wire is only energized when the brake lights come on. Connect wire [#4] to this one. If this wire is not present, use a voltmeter or test light to find a wire that is hot only when the brake lights are on and connect to that wire instead.

Locate the wires that travel from the PCM to the EBPV. There should be a 2-wire plug just under the turbo compressor. It is located towards the front of the engine between the turbocharger and the fuel pump on the intake side of the turbocharger. The plug is attached to the turbo pedestal. Disconnect this plug, and remove the loom (protective plastic shielding) on the plug side moving away from the turbo, to expose the wires inside. Slide off the loom until it reaches the intersection of the larger wire bundle. This will expose both wires; one wire is black w/gray, the other gray w/red.

The Two Rectifier Diodes that are required will each have a silver band around one end. Twist the wires from the "silver" ends together making a "Y.” The "black" ends will be at the top and the silver ends at the bottom of the "Y.” Cut the gray w/red wire 2"-3" before the plug, strip the insulation back 1/2" or so, and solder the black end on one diode to the end of the cut wire that does NOT go into the plug. Solder the black end on the other diode to wire [#3]; solder the two silver ends to the gray w/red wire that goes into the plug. The diodes are necessary to prevent the brake lights from coming on when the PCM operates the EBPV, and to prevent the PCM from receiving a 12v signal from wire [#1]. If you don't have a soldering iron, you can use crimp connectors.

Coat all the wire connections with several coats of Liquid Electrical Tape, then wrap them with regular electrical tape, and replace the loom. Also, cover wires [#3 & #4] with loom, all the way to the switch. Bundle up any excess wire with wire ties, and secure them all to prevent chafing. Install the switch in its hole, and replace the dash trim.

Automatic Transmission Circuit:

If the intention is to use the EBPV as a brake with an Automatic Transmission equipped vehicle, then an additional circuit is required in order to reap the most engine braking benefit from this application. This circuit will keep the torque converter locked up while the valve is in an activated state. In effect, it maintains engine RPM in relation to ground speed and prevents transmission disconnection, which would result in loss of engine speed, ultimately reducing the effectiveness of the exhaust valve as an engine brake.

Auto Trans Circuit Procedure: Run a wire from [#3] to connect to the TC lockup circuit. Install a diode on that wire with the silver end towards the transmission.

slowtowpig's Sig:1997 4dr 4x4 sb Powerstroke, 6in of lift,down pipe,custom 5in straight dual w/ 8in tips,6pos wildman chip, straight air filter, beans IDM, trans built by mikes trick shift,D66 turbo, 17*HPOP, wildman injectors,FPR shimmed, gauges, 37's on 20s, tv/dvd, cerwin vega mids/highs, PPI flat piston subs, 05 badges, superduty cab lights, shaved tailgate, 12000k HIDs, cobra 29ltd chrome edition cb
Reply With Quote
  #2  
Old 09-07-2008, 02:22 PM
slowtowpig's Avatar
Diesel Bomber

   
View Member's Albums

Default

Testing:

To test, start the engine. With the switch in the up position, the upper light should come on when you press the brake pedal, and you should hear a distinct hissing or swooshing sound when the EBPV closes, after 2-3 seconds. With the switch down, the bottom light should come on and stay on, and the EBPV will close immediately.

Conclusions:

I find no advantage to using the EBPV brake with an unloaded truck during normal driving. However, when I am hauling a heavy load, it is worth its weight in gold. During normal hauling, I leave it in the up position, so I will have extra braking power when I need it. For exit ramps and long or steep downgrades, I put it in the down position and leave it on as long as practical. When the truck is parked, you can leave the switch in the down position, as it is useful as an anti-theft device. The activated valve will not allow the truck to go much over 33 mph. This is also very useful for very fast warm-ups in winter.
Reply With Quote
  #3  
Old 04-10-2009, 03:30 AM
Newbie

   
View Member's FaceBook Profile

Default

Hi, Is there any other web site that would have the EBPV schematic pic? the Web address that you have listed on both your postings are outdated. Any help would be great. Thanks a bunch. NorthernRebel.
Reply With Quote
  #4  
Old 02-03-2012, 07:34 PM
97 stroker's Avatar
Diesel Fan

   
Default

do you know how to just install a torque converter lock up switch on a 97 f250 psd? ive been looking all over the web and cant find out how. one forum a guy said to tap into the purple wire with a yellow tracer on the tranny wiring harness and run it to a toggle switch and ground the switch. BUT i can not find a purple wire with a yellow tracer on that harness. just a purple with pink tracer

97 stroker's Sig:97 f250 7.3l powerstroke, 6 in.lift 37 in. tires dana 60 front axle
Reply With Quote
 
 
 
submit to reddit
Reply


Thread Tools Search this Thread
Search this Thread:

Advanced Search


LinkBacks (?)
LinkBack to this Thread: http://www.dieselbombers.com/ford-powerstroke-94-98-7-3l/16108-diy-exhaust-brake.html
Posted By For Type Date
Info.com - Ebpv Exhaust Brake - www.Info.com This thread Refback 09-17-2009 09:52 PM

 
All times are GMT -5. The time now is 08:32 AM.

Copyright And Legal Notice Links Of Interest

Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, vBulletin Solutions, Inc.
Diesel Bombers ® - All Content Protected Under Intellectual Property Rights Law of Registered Trademarks
Reg. No. 3,494,401 Cls. 100, 101 & 104 Under Int. Cl. 38
USE AT YOUR OWN RISK WE HOLD NO LIABILITY FOR ANY CONTENT RIGHT, WRONG OR INDIFFERENT

Protected by Copyscape Duplicate Content Check